Geçtiğimiz gün küçük oğlumun ödevlerine bakarken gördüm aşağıdaki resmi. Almanca kelimeler ile resimlerin eşleştirilmesini isteniyordu ödevde. Hiç almanca bilmiyor olmamama rağmen biraz düşünme ile her kelimeyi doğru şekilde eşleştirebildim. Yüzde yüz doğru cevapları seçtim. Eminim siz de rahatlıkla yapabilirdiniz.

Peki bunu nasıl yaptım ya da bu konunun günümüz dünyası ile ne ilgisi var?
İnsan beyni nasıl düşünüyor ya da düşünmek eyleminde neler gerçekleşiyor? Bilim dünyası uzunca bir süredir bu sorunun cevabını arıyor ve yapay zekâ (AI) üzerine ciddi araştırmalar yapılıyor. İkinci makine dönemi içinde (Artificial Machine) olduğumuz şu dönemde, AI üzerine, özellikle 2010’lardan sonra oldukça mesafe alındı, halen de alınıyor. Zira, gün geçmiyor ki yeni bir AI uygulaması ile karşılaşmayalım.
Şimdi konuyu başka bir perspektiften açıklamaya çalışalım. Resme yani oğlumun ödevine geri dönelim. Almanca kelimeler ile resimleri eşleştirmek…
Hiç bilmediğim almanca kelimelere bakarken bazı çıkarımlar yapmaya çalıştım. Resimlere bakarak Almanca kelimelerin İngilizce ve Türkçe karşılıklarını aklımdan geçirdim (bildiğim diller bu olduğu için).
- Türkçe aslan kelimesine benzeyen kelime yoktu seçeneklerde ancak İngilizce aslan anlamına gelen ‘lion’ kelimesine benzeyen, onu çağrıştıran ‘Löwe’ kelimesi vardı seçeneklerde. Lion ve Löwe kelimelerinin harf sayıları eşit ve ikisi de ‘L’ harfi ile başlıyordu. Aralarında benzerlik vardı ve ‘löwe’ kelimesi bir ihtimal aslan kelimesinin Almanca karşılığı olabilirdi.
- Yunus kelimesine benzeyen kelime de yoktu seçeneklerde. Ancak İngilizce ‘yunus’ kelimesinin karşılılığı olan ‘dolphin’ kelimesine oldukça benzeyen, harf sayıları birbirine yakın ve ilk harfi ‘d’ olan ‘delfin’ kelimesi bulunuyordu seçeneklerde. Aralarındaki benzerlik oldukça yüksekti. Büyük ihtimalle ‘delfin’ kelimesi yunusun almanca karşılığı olmalıydı.
- Benzer şekilde papağana benzeyen kelime ‘papagei’ olarak, zebra kelimesi ise bire bir aynısı olarak zebra olarak duruyordu seçeneklerde. Bu kelimeler de ingilizce karşılıklarına oldukça yakın ya da aynısıydı.
- Maymun için zaten ‘affe’ kelimesi işaretlenmişti ki ne Türkçe (maymun) ne de İngilizce (monkey) karşılığına hiç benzemiyordu.
- Devekuşu da aynen ‘affe’ gibi Türkçe (devekuşu) ne de İngilizce (ostrich) karşılığına hiç benzemiyordu. Ancak diğer seçenekler yerini bulunca geriye bir tek bu kaldığı için devekuşunun da karşılığı ‘Strauß’ olmalıydı.
Tüm bunları beynimin içindeki ‘neuronlar’ aracılığı ile yapmıştım. Daha önce öğrendiğim kelimeler beynimin içinde yer etmiş (training) ve öğrendiklerimi ilk defa gördüğüm kelimeler (testing) ile karşılaştırarak (algorithm) aralarında benzerlik (similarities) olup olmadığını anlamaya, çıkarım yapmaya çalışmıştım. Bir kelime zaten işaretlenmişti. Dört kelime ile ilgili oldukça benzerlikler bulmuştum ve geriye kalan bir kelime hakkında benzerlik kuramasam da geriye kalan tek kelime olduğu için beş seçeneği de doğru işaretleyebilmiştim.
Peki, ben bu sonuca nasıl ulaşabilmiştim? Daha doğrusu, insan beyninin öğrenme ve karar verme dürtüsünü taklit eden yapay zekâ bu sonuca ulaşabilir mi, ulaşabilirse bunu nasıl yapar?
Cevabı birlikte arayalım.
Beynimin için deki neuronlar bu kelimelerin İngilizce ve Türkçe karışlıklılarını daha önce defalarca görmüştü ve öğrenmişti (supervised learning). Bir başka ifadeyle makine öğrenmesinin ilk fazı olan ‘training’ session daha önceleri gerçekleşmişti. Şimdi, karşıma çıkan ve daha önce görmediğim kelimeler (unseen data) ile daha önceki öğrenme sürecini test ediyordum. Bunu yaparken yaptığım tek şey kelimeler arasında benzerlik kurmaya çalışmaktı (similarities). Bazen kelime uzunluğu, bazen harflerin benzerliği bazen ise hiç benzerlik olmaması karar verme sürecinde bana yardımcı olmuş ve kelimeler ile resimleri doğru bir şekilde eşleştirebilmiştim.
Yapay zekâ işte aynen bu şekilde çalışıyor. Büyük veri üzerinden öğreniyor ve öğrendiğini matematiksel olarak modelliyor. Öğrendikleri ile yeni gördüklerini model üzerinde karşılaştırarak sınıflandırma (classification) yapıyor (Learning – Modelling – Testing). Tek fark bunu sayılar (vektörler) üzerinden yapıyor. İşin özeti aslına bu kadar basit.
Tabi ki insan beyninin işleyişi çok daha kompleks. Ancak şunu biliyoruz ki gördüğümüz, okuduğumuz, hissettiğimiz, tattığımız ya da duyduğumuz her şey (beş duyudan gelen büyük veri) milyarlarca neuronun (processing unit) oluşturduğu bir ağ üzerinde (Neural Networks) işlenerek, filtrelenerek bir modele dönüştürülüyor ve beynimizde bu model bir süre kalıyor. Yeni bir şey (unseen data) ile karşılaşınca yeni veri beynimizin içindeki, daha önceden öğrenme sürecinde oluşturulmuş ve sayısını bilemediğimiz modellerden ilgili olan ile karşılaştırılıyor ve beyin bir cevap üretiyor. Bir şeye cevap verememenizin gerçek nedeni muhtemelen o konu ile ilgili daha önce öğrenme (training) sürecinden geçmemeniz, yeterince öğrenememeniz (under-fitting) ya da aşırı ezber yapmanız (over-fitting) olabilir.
Yapay Zekâ uygulamaları (Regression, Classification, Clustering) geleceği şekillendirmeye çoktan başladı. Artık her şey akıllı (smart) olmak zorunda. Smart yani veri üreten ve paylaşan nesnelerden gelen verileri kullanmak fark oluşturuyor. Yapay Zekâ konusunu ivedilikle gündeminize almanızı, bu konu hakkında kendinizi geliştirmenizi öneririm. Bu konu üzerine düşünün derim.