EXCEL OUT | JUPYTER/PHYTON IN

  • Hangi malzemeden, ne kadar stok tutmalıyım (Forecast: Q)?
  • Ne zaman yeniden satın alma sipariş vermeliyim (RoP: Re-order Point)?
  • Yeni ürünü ne zaman pazara sürmeliyim (Product Lifecyle)?
  • Tedarik zincirinin en zayıf halkaları hangi tedarikçilerdir (Supplier evaluation)?
  • Yılın ikinci yarısında ne kadar üretim kapasitesine ihtiyacımız olacak (Demand planning)?
  • ….

Birçok üretici, operasyonlarını yürütmek için bu gibi sorulara cevaplar arıyor. Geçmiş veriler, sezgisel yaklaşımlar, ön görüler ve elbette ki EXCEL yardımı ile geleceği tahmin etmeye çalışıyor. Ancak, verinin büyüklüğü ve süreçlerin otomatize edilmesinin gerekliliği veri analizinde yeni yaklaşımların kullanılmasını zorunlu kılıyor.

Devir değişmeye çoktan başladı. Yakın bir zamanda Excel’in yerini JUPYTER / PHYTON alacak gibi görünüyor. Zira, bu ortamda gerçekleştirilen ML uygulamaları geleceği çok hızlı ve daha doğru öngörebiliyor. Örneğin, yukarıda bahsi geçen sorulara ‘Holt-Winter’s ES, ARIMA, Decomposition’ gibi zaman serisi tahminleme (Time Series Forecast) yöntemleri üzerinden çok hızlı, kolay ve daha az yanılma payı ile cevaplar bulunabiliyor. Üstelik bunun için 20 yıllık deneyime de ihtiyacınız yok, 20’li yaşlarda bir veri bilimi mühendisinin ERP ‘den gerekli verileri çekerek, Phyton üzerinden ML uygulaması geliştirmesi yeterli. 

Yeni dönemin itici gücü ‘veri’, temel konusu ise verinin dönüşümü. Artık, CI (Continual Improvement) ile birlikte CDT (Continual Data Transformation) konusunu da gündeme almak gerekiyor. İşletmelere, vakit kaybetmeden, ERP’ deki verileri üzerinden ML uygulamaları geliştirmek için en az bir veri bilimi mühendisi istihdam edin;  genç arkadaşlarıma da ML konusunda kendinizi geliştirin derim.

Inventory Management with ML & LEAN Mgmnt.

Envanter planlaması ve yönetimi her daim sıkıntılı konu olmuştur. Talep tahminleme süreçlerinde başvurulan sezgisel yöntemler ve malzeme akışını destekleyecek doğru sürecin tesis edilememesi stokların şişmesine, işletme sermayesinin bağlanmasına etki ederek işletmelerin rekabetçi olabilmeleri engel teşkil etmektedir. İşletmelerin Kamçı etkisinisönümlemek ve rekabetçi stratejiler izleyebilmek için iki konuya odaklanması gerekiyor: Doğru forecast ve JIT purchasing.

Forecast, geçmiş verilere bakarak geleceğin projeksiyonun çıkarılması anlamına gelir. Eğer, zaman serisi (time series) olarak geçmiş dönem verilerinize bakarsanız (örneğin son iki yılın aylık satış rakamları) iç içe geçmiş üç bileşen görürsünüz (F = T * S * I). Trend, sezonsal etki (seasonal component) ve gürültü (noise). 

  • T: Trend, sezonsal ve gürültü faktörlerinden arındırılmış bileşendir. Pazardan, zaman içinde ne kadar pay aldığınızı ‘saf’ olarak olarak tanımlar. Genelde lineer bir fonksiyon olarak tanımlanır ve gelecekte nasıl davranacağı ön görülebilir. 
  • S: Seasonal component, trendden arındırılmış geçmiş veri içindeki düzenli değişkenlikleri, paternleri açıklar. Örneğin kış aylarında şemsiye satışı artar, yazın düşer. Paternler de aynen trend gibi dönemsel olarak açıklanabilir ve gelecekte nasıl değişkenlik göstereceği tahmin edilebilir. Sezonsal etkiyi açıklayabilmek için geçmiş dönemlerin aynı zamanına bakılır. Örneğin, bu senenin temmuz ayı ile geçmiş senelerin temmuz ayı karşılaştırması sezonsal etkiyi açıklar. Oysa, bu senenin haziran ayı ile temmuz ayı karşılaştırması trendi açıklar.
  • I: Irregular components (noise), bizim kontrolümüz dışında gelişen, öngörülebilmesi mümkün olmayan ve hiç bir şekilde patern oluşturmayan değişkenliklerdir. Forecast süreçlerinde göz önünde bulundurulmamaları gerekir.

Bu bilgiler doğrultusunda gelecek dönem Forecast ‘F = T * S’ olarak tanımlanabilir. Burada ‘I’ faktörü yani noise hesaba katılmamıştır. 

Önceleri, bu süreci yönetmek oldukça meşakkatliydi. Kompleks istatistik araçları kullanmak, konunun uzmanlarından destek almak gerekiyordu. Bunlar sağlansa dahi binlerce malzeme için, en az üç parametreyi optimize edebilmek pek kolay değildi. Ancak şimdi Machine Learning (time series forecasting) uygulamaları ile bu süreç çok daha basit ve doğru şekilde yapılabiliyor.  EOQ için gerekli olan (K, D, hc) dönemsel olarak ML / Forecasting üzerinden elde edilebiliyor ve o dönem için en uygun sipariş miktarı (Q) hesaplanabiliyor. Hem de binlerce ürün için…

Peki, bu süreci yönetebilmek için MLOps tek başına yeterli midir? Model, bize gelecek dönemin ihtiyacının hesaplanabilmesi için gerekli olan parametre değerlerini üretmiştir. Şimdi ise JIT purchasing (EOQ + Kanban) yöntemi ile malzeme tedariki yapılması ve yine KAIZEN uygulamaları ile EOQ’ yu aşağı alacak iyileştirme faaliyetlerini yapmamız gerekiyor. 

Burada üzerine düşünülmesi gereken soru şu olabilir. ML mi yoksa LEAN uygulamaları mı kamçı etkisinin indirgenmesine daha fazla etki etmiştir? ML, forecasting ile bize rakamları üretir. Gürültü payını hesaba katmaz ve belki de gerçek hayatta hiç ummadığımız başka ön görülemeyen değişkenlikler de olabilir. Savaş, pandemi, doğal afet gibi. İşte bu aşamada Kanban ve SM üzerinden yürütülen JIT purchasing, gereğinden fazla sipariş verilmesini engeller; kamçı etkisini sönümler.

Lean her zaman hayatımızda olacak; ML de yeni yeni giriyor. MLOps nereye odaklamamız gerektiğini, Lean ise nasıl düzelteceğimizi açıklıyor. MLOps konusu giderek daha da önem kazanıyor. Veri bilimi konusuna yatırım yapanlar rekabet avantajı elde ediyor. Zira, bilmek değil kullanmak fark oluşturuyor. Ancak, Lean konusunu da asla ihmal etmeyin derim. 

Machine Learning

Üretim Endüstrisinde dijitalleşme çalışmaları olanca hızı ile devam ediyor. Artık, IoT üzerinden veri üretebiliyor, üretilen verileri CPS (Cyber Physical Systems) üzerinden taşıyor ve büyük veriyi (Big Data) elde edebiliyoruz. Bu konuda birçok işletmenin önemli mesafeler aldığını sahada gözlemliyoruz. Bu aşamaya gelebilmek oldukça önemli, ancak asıl mesele buradan sonra başlıyor: Büyük veri içinden anlamlı sonuç çıkarabilmek. Yalın felsefede de olduğu gibi ‘ölç-kayıt altına al- analiz et – aksiyona geç’ sürecini işletebilmek için Dijital Dönüşüm sürecinde de büyük veriyi analiz etmeye; bunun içinde makine öğrenmesi (machine learning) konusuna odaklanmaya ihtiyacımız var.

Yapay zekâ (AI), makine öğrenmesi (ML) ve derin öğrenme (DL) konuları bu anlamda üzerine düşünmemiz gereken konuların başında geliyor. AI, tüm bu kavramların en üstünde yer alarak insan gibi düşünen ve hareket eden makineler/sistemler oluşturmayı amaç edinen mühendislik bilimidir. ML ise AI’ın alt dalıdır. Sistemlerin ya da makinelerin programlama yapmadan, geçmiş deneyimlerden ya da verilerden öğrenebilmesine olanak sağlar. İstatistik bilimi ve ileri seviye bilişim teknolojileri aracılığı ile verilerden bir fonksiyon üretmeye; üretilen fonksiyon aracılığı ile de geleceği tahminleme ilkesine dayanır. DL ise ML’in bir alt dalı olarak yapay sinir ağları üzerinden, makinelerin insan beynine yakınsama yapılarak düşünebilmesi üzerine çalışır.

Kobi seviyesine baktığımızda AI konusu kolayca ele alınabilecek bir konu değildir. Oldukça önemli uzmanlık, yüksek bilişim yetkinliği ve son derece büyük-büyük veri gerektirir. DL de benzer şekilde çok büyük-büyük veri gerektirir. ML ise nispeten işletme seviyesinde çok daha kısıtlı bilişim teknolojileri ve yeteri kadar büyük veri kullanılarak uygulanabilen bir kavram olduğu için işletmelerin öncelikli olarak ML ya da ‘veri bilimi’ konusunda kendilerini geliştirmelerinde yarar olduğu kanısındayım.

ML, bahsedildiği üzere geçmiş verilerden öğrenme ilkesine dayanır. Daha önceleri sistemlere ‘program ve veri’ ikilisini verir çıktı elde ederdik. Yani, sistem yaptığımız programa göre çıktı üretirdi. ML ‘de ise, sisteme önce geçmiş veri (Xs: Data) ve çıktıları (Ys: Label) eş zamanlı veriyor ve sistemin bu iki bilgi doğrultusunda bir model (program) üretmesini; üretilen modeli gerçek veri üzerinde kullanarak yeni verinin çıktısını (output) tahminlemeye çalışmak ML’in özünü temsil eder. İstatistik bilimi, yüksek matematik ve algoritmaların bilişim gücü ile birleştirilmesi sonucunda bunun bugün elde edebiliyoruz.

Veri kavramı giderek daha da önemli stratejik rekabet aracı olmaya başlıyor. Hemen her iş alanında ya da disiplinde veri manipülasyonu yapmadan karar alabilmek neredeyse olanaksız hale geliyor. Sağlıktan finansa, üretimden hizmet sektörüne kadar her alanda veriler üzerinden kararlar alınıyor ve veri bilimi/veri mühendisliği giderek artan oranlarda talep görmeye başlıyor. Yakın bir zamanda hemen her işletmede veri bilimi mühendisi göreceğimizi belirtmek sanıyorum yanlış olmaz.

Veri bilimi, ‘Domain, Computer Science, Statistics’ alanlarında uzmanlaşmayı gerektiriyor. Bugün, yurtdışında birçok üniversitede bazı istatistik, matematik bölümleri yapay zekâ mühendisliğine dönüşüyor, bilgisayar bölümlerindeki ders programlarına kapsamlı/güncel ML müfredatı ekleniyor. Ülkemizde de yapay zekâ mühendisliği bölümlerinin bazı üniversitelerde açıldığını gözlemliyoruz. Bu bölümlerin artması ve hatta belki de tüm mühendislik bölümlerinde ML_101 dersinin okutulması kanımca artık bir gereksinim.

Kısaca; ML, karar verme süreçlerinde acizliğimizi ortadan kaldırıyor. Gelecek, ML ve AI üzerine şekilleniyor ve bizim de geleceği kaçırmamak için bu konularda çalışacak, geleceği şekillendirecek veri bilimi mühendislerine çok fazla ihtiyacımız olacak gibi görünüyor.

#The purpose of computation is insight, not numbers (R. Hamming).